
p
-. , p

NRL DOCUMENT: 09'1o-14Z (Preliminary)

CV))

INTERACTIVE GRO/OSSE REDUCTION ENVIRONMENT (IGORE)
DESIGN DESCRIPTION

GAMMA RAY OBSERVATORY

ORIENTED SCINTILLATION SPECTROMETER EXPERIMENT

Northwestern University
Evanston, IL

N 00 1 - S.- C- ZVO. /
Critical Design Review Version

Release Date: February 3, 1989

Author: David Grabelsky

DTI
^LECTE

JUN 0 71 91

Ap ' d Im pub iu i-

91-014459-1 6 068 llll~! ~Il~ll~lllllll

Table of Contents Page i

1 INTRODUCTION 1
1.1 Purpose 1
1.2 Scope 1
1.3 Applicable Documents 1
1.4 List Of Acronyms 2
2 DESIGN OVERVIEW 3
2.1 High Level Command Language: IDL 3
2.2 Structures And Records 3
2.3 Application Frontend (AFE) 3
2.4 General Tables Facility 3
2.5 Saving And Restoring Environment 3
2.6 Journaling 3
2.7 IGORE Condition Handler 3
2.8 Preprocessors 3
3 DEFINITIONS AND TERMINOLOGY 4
3.1 Descriptors In IGORE 4
3.1.1 VAX Descriptor: VAXDESCR 4
3.1.2 IDL Descriptor: IDL DESCR 4
3.1.3 Data Descriptor: DATADESCR 5
3.1.4 IGORE Structure Descriptor: STRUCDESCR . . . 5
3.1.5 Structure Subfield Descriptors: REC_FLDDESCR . 6
3.1.6 Dynamic IGORE Record Descriptor: DYNAM_RECDESCR 7
3.2 General Terminology 7
4 IDL 8
4.1 IDL Variables 8
4.2 IDL Functions And Procedures 8
4.3 Linking FORTRAN Applications To IDL 8
5 STRUCTURES AND RECORDS 9
5.1 Design Description Overview 9
5.1.1 Structure Design 9
5.1.1.1 Structure Descriptors 9
5.1.1.2 Dynamic Access Of Strucutures 10
5.1.1.3 Interactive Structure Definition11
5.1.1.4 Structure Descriptor Table 11
5.1.1.5 Structure Descriptor Libraries 11
5.1.1.6 Structure Type Aliases 11
5.1.2 Record Design 11
5.1.2.1 Dynamic Record Descriptors 11
5.1.2.2 Associated Tables 11
5.1.2.3 Record Aliases 11
5.1.2.4 Interactive Record Operations11
5.2 Modules And PDL 11
6 APPLICATION FRONTEND (AFE) 12

6.1 Design Description Overview12
6.1.1 CTRL REC Structure And Parameter Descriptions 13
6.1.1.1 FOR VARDPTR 15 9911m For
6.1.1.2 FORNAMDPTR 15...
6.1.1.3 IDL VARDPTR 15' TAB b D
6.1.1.4 ARRAY_DIMS_PTR 15 uJotpoed o
6.1.1.5 REQOPT 15 iftaL- _
6.1.1.6 RECORDPARAM 16
6.1.1.7 CONVMASK 1: fi.".16ole
6.1.1.8 IDL PARAHRCVD 16
6.1.1.9 10 DIR 16
6.1.1.10 CONVHODE 17 tlability Codes

fSpeo

a
J A

L

Table of Contents Page ii

6.1.1.11 CONV FLAG 18
6.1.1.12 FOR VAR PTR 18
6.1.1.13 IDL VARPTR 18
6.1.1.14 PARAM PTR 18
6.1.1.15 FOR VAR SIZE 18
6.1.1.16 IDLVARSIZE 18
6.1.1.17 NBYTES 18
6.1.1.18 NREC18
6.1.1.19 FOR VAR INIT 19
6.1.1.20 PA. 19
6.1.2 Parameter Classifications 19
6.1.2.1 Variables 19
6.1.2.2 Records 20
6.1.2.3 Required And Optional Parameters 20
6.1.3 Parameter Transfer Direction Modes 21
6.1.3.1 Input Only 21
6.1.3.2 Output Only 22
6.1.3.3 Input/Output 23
6.1.3.4 No Transfer Necessary 25
6.1.3.5 Illegal Transfers 25
6.1.4 Transfer Of Dimensions 25
6.1.4.1 Conditions Requiring Dimensions Transfer . 26
6.1.4.2 Dimension-Mapping Rules 26
6.1.5 Conversion And CONVERSION-MNEMONICS 27
6.1.5.1 Numeric Conversions 27
6.1.5.2 CONVERSION-MNEMONICS Matrix 28
6.1.5.3 Special Actions 30
6.2 Modules And PDL 31
6.2.1 BLDPAIR,. 35
6.2.1.1 Modules Called 35
6.2.1.2 PDL 35
6.2.2 GET VAX DESCR 35
6.2.2.1 Modules Called 35
6.2.2.2 PDL 35
6.2.3 GETIDLDESCR 35
6.2.3.1 Modules Called 35
6.2.3.2 PDL 36
6.2.4 CHECK PAIRS 36
6.2.4.1 Modules Called 36
6.2.4.2 PDL 36
6.2.5 CRACK DESCR 36
6.2.5.1 Modules Called 36
6.2.5.2 PDL 36
6.2.6 SETUP XFER 36
6.2.6.1 Modules Called 36
6.2.6.2 PDL 36
6.2.7 TYP_SIZCHK 36
6.2.7.1 Modules Called 36
6.2.7.2 PDL 36
6.2.8 XFER DIMS 36
6.2.8.1 Modules Called 36
6.2.8.2 PDL 36
6.2.9 RECORD PASSING 36
6.2.9.1 Modules Called 36
6.2.9.2 PDL 36

Table of Contents Page iii

6.2.10 RECORD SETUP 36
6.2.10.1 Modules Called 36
6.2.10.2 PDL.......................36
6.2.11 XFER PARAS 36
6.2.11.1 Modules Called 36
6.2.11.2 PDL.........................37
6.2.12 MOVIT......................................37
6.2.12.1 Modules Called 37
6.2.12.2 PDL.......................37
6.2.13 CONVERTAND MOVE 37
6.2.13.1 Modules Called 37
6.2.13.2 PDL.......................37
6.2.14 CONVERT..37
6.2.14.1 Modules Called 37
6.2.14.2 PDL.......................37
6.2.15 SETDIMBLK37
6.2.15.1 M4odules Called 37
6.2.15.2 PDL.......................37
7 GENERAL TABLES FACILITY 38
7.1 Design Description Overview 38
7.1.1 Directory Table: DIRECTORYTABLE.38
7.1.2 Structure Descriptor Pointer Table:

STRUCDESCRPTRTABLE 38
7.1.3 Dynamic Record Descriptor Table:

DYNAMRECDESCRTABLE 39
7.2 Modules And PDL....................39
8 SAVING AND RESTORING ENVIRONMENT. 40
8.1 Design Description overview 40
8.2 Modules And PDL....................40
9 JOURNALING,........................41
9.1 Design Description Overview 41
9.2 Modules And PDL....................41
10 IGORE CONDITION HANDLER 42
10.1 Design Description Overview 42
10.2 Modules And PDL....................42
11 APE PREPROCESSOR 43
11.1 Design Description Overview 43
11.2 Modules And PDL....................43
12 STRUCTURE DESCRIPTOR PREPROCESSOR 44
12.1 Design Description Overview 44
12.2 Modules And PDL....................44

IGORE Design Description Page 1
INTRODUCTION 3 February 1989

1 INTRODUCTION

1.1 Purpose

This document describes the detailed software design of the
Interactive GRO/OSSE Reduction Evironment (IGORE). IGORE is an
interactive scientific data analysis program for maniputlation,
reduction, and analysis of OSSE science data. The software
requirements of IGORE are described in document [1] (see list below);
these requirements delineate the capabilities and functions which
IGORE shall provide each user in order to carry out the data analysis
tasks. The software design used to implement the requirements is
described in this document.

1.2 Scope

The design description contained in this document pertains mainly to
utilities and functions of general use in IGORE, such as passing data
between applications, declaration of structures and records, etc.
Specific scientific data analysis applications, such as spectral
summation, resampling of spectral channels, and deconvolution are
beyond the scope of this document.

1.3 Applicable Documents

The documents listed below will be referred to as needed in this
document; they will be referenced according to their number in the
list.

1. IGORE Software Requirements Specifications; Gamma Ray
Observatory Oriented Scintillation Spectrometer Experiment;
NRL Document 0926-129. Author: David Grabelsky.

2. IDL User's Guide. Research Systems Inc.

3. Data Analysis System Requirements Specification; Ganmma Ray
Observatory Oriented Scintillation Spectrometer Experiment.
Author: Mark S. Strickman.

4. Preliminary Data Analysis Plan; Gamma Ray Observatory
Oriented Scintillation Spectrometer Experiment. Author:
Mark S. Strickman.

5. Spectral Data Base (SDB) User's Guide; OSSE Software Library;
Gamma Ray Observatory Oriented Scintillation Spectrometer
Experiment. Authors: Rod S. Hicks, Nina M. Sweeney, and
Jack D. Daily.

6. Fit Data Base (FDB) User's Guide; OSSE Software Library;
Gamma Ray Observatory Oriented Scintillation Spectrometer
Experiment. Author: David Kuo.

IGORE Design Description Page 2
INTRODUCTION 3 February 1989

1.4 List Of Acronyms

AFE Applications Frontend
AOE Abort On Error
COW Continue On Warning
DBMS Data Base Management System
EMS Eat My Shirt
FDB Fit Data Base
GRO Gamma Ray Observatory
HLCL High Level Conmmand Language
ICH IGORE Condition Handler
IGORE Interactive GROIOSSE Reduction Environment
IPOA Indiscriminate Proliferation Of Acronyms
LOA List Of Acronyms
NRL Naval Research Lab
NU Northwerstern University
OSSE Oriented Scintillation Spectrometer Experiment
PIF Program Interface
SDB Spectral Data Base
UIF User Interface

IGORE Design Description Page 3
DESIGN OVERVIEW 3 February 1989

2 DESIGN OVERVIEW

2.1 High Level Command Language: IDL

2.2 Structures And Records

2.3 Application Frontend (AFE)

2.4 General Tables Facility

2.5 Saving And Restoring Environment

2.6 Journaling

2.7 IGORE Condition Handler

2.8 Preprocessors

IGORE Design Description Page 4
DEFINITIONS AND TERMINOLOGY 3 February 1989

3 DEFINITIONS AND TERMINOLOGY

3.. Descriptors In IGORE

Many of IGORE's functions are implemented using structures of various
types to store and relay information about the data being processed.
These structures shall be referred to as descriptors since they
contain information similar to that contained in standard VAX
descriptors. Six basic descriptor types are used; each is described
in the following subsections.

3.1.1 VAX Descriptor: VAXDESCR

This shall refer to the standard VMS descriptor used for VAX data
types. Only the prototype portion (first two longwords) is used. The
following structure can be used to access this descriptor:

structure /vaxdescr/
integer*2 length Ibytes per data element
byte type IVAX data type
byte class Iscalar, array, etc.
integer*4 pointer Ipointer to start of data

end structure

For arrays, offsetting one longword beyond POINTER will access ARRSIZ,

the total number of bytes in the array.

3.1.2 IDL Descriptor: IDLDESCR

This shall refer to the standard descriptor used for all IDL variables
(see section 4 below). The following structure can be used to access
this descriptor:

structure /idldescr/
byte type 1IDL data type
byte flags Iconstant, array, temporary, etc.
integer*2 link Ifor IDL system use only
integer*4 valuwordl Idepends on type, flags
integer*4 valuword2 Idepends on type, flags
byte nchar Ino. characters in name
character*15 name Ivariable name = name(l:nchar)

end structure

For scalars (single 1, 2, 4, or 8 byte data elements), the value is
embedded in the descriptor starting at the first byte of VALUWORDI.
For arrays of all types, VAL.U_WORDI is a pointer to a standard VAX
array descriptor. For scalar strings, a standard VAX dynamic string
descriptor is embedded in the two value words, starting at the first
byte of VALUWORDI. IDL only allocates up to NCHAR bytes (the actual
length of the variable's name, .le.15) beyond NCHAR for the name.
Attempting to access bytes beyond NCHAR will produce unpredictable
results.

IGORE Design Description Page 5
DEFINITIONS AND TERMINOLOGY 3 February 1989

3.1.3 Data Descriptor: DATA DESCR

This descriptor shall be used to manage standard OSSE data in a very
compact form. The information carried in this descriptor shall be the
address and size (in bytes) of the associated data if the data are
resident in memory, a pointer to an entry in the FILE TAGWORD TABLE if
the data reside on disk, the data type (SDB, FDB, etc.), and the
number (up to eight) and size of the dimensions of the data. The
following structure can be used to access DATADESCRs:

structure /datadescr/
integer*4 pointer laddress of memory-resident data
integer*4 nbytes Itotal memory allocation for data
character*16 data type Istandard OSSE data type
byte tbl_index lentry no. in filetagword table
byte reserved_1 Ireserved for future use
byte reserved_2 Ireserved for future use
byte reserved_3 Ireserved for future use
integer*4 dim_1 Ifirst dimension or 0 if scalar
integer*4 dim_2 Isecond dimension or 0 if beyond last

integer*4 dim_8 leigth dimension or 0 if beyond last
end structure

When OSSE data are maniputlated as header+data (as opposed to simply
header or simply data), the actual data will be represented as
DATADESCR embedded in the header. Routines for cracking data
DATADESCRs shall be provided.

3.1.4 IGORE Structure Descriptor: STRUCDESCR

This shall refer to descriptors of native IGORE structures. The
purpose of STRUCDESCRs is to enable manipulation (creation, cracking,
etc.) of all records defined to be a type associated with a given
STRUC DESCR. The basic structure of each such descriptor will be a
character string consisting of delimited subfields containing the
ASCII name of each field of the associated structure and a descriptor
of the data associated with that subfield. STRUCDESCRs may be of
variable length, depending on the number and type of subfields in the
associated structure. Once a particular STRUCDESCR is "loaded" into
IGORE, any number of records of the type described by that STRUCDESCR
may be interactively declared.

STRUCDESCRs will be created by a preprocessor that parses source
files with familiar FORTRAN definitions made with the STRUCTURE
statement. A system library of STRUCDESCRs will be maintained in a
readonly shared global common; separate user libraries may also be
maintained. First use of a given STRUCDESCR will cause it to be
loaded into memory. When a user references a STRUCDESCR type which
is not already loaded, IGORE will always search the user's library
first for that type. This will allow users to change the default
definition of system stucture types (identified by mnemonic).

IGORE Design Description Page 6
DEFINITIONS AND TERMINOLOGY 3 February 1989

3.1.5 Structure Subfield Descriptors: RECFLDDESCR

This shall refer to the descriptor of a given subfield of an IGORE
structure. Strings of delimited RECFLDDESCRs for a given structure
make up the STRUCDESCR for that structure. RECFLDDESCRs have
variable lengths, depending on the name and type of the associated
subfield.

The REC FLDDESCR prototype consists of: i) a "^" delimiter; ii) the
ASCII name of the field (up to 15 characters); iii) a wZ" delimiter;
iv) a fixed length descriptor portion; v) the number dimensions (up to
8) if the associated varaible is an array; and vi) the sizes of each
of the dimensions. Access to the descriptor of a given subfield uses
the FORTRAN character INDEX function to find the delimited name of the
field; the maximum-lengthed field (i.e., assuming all 8 dimensions are
used) following the name is then accessed. This descriptor portion is
then cracked in order to get to the actual data.

Access to the descriptor portion following the delimited name can be
made with the following structure:

structure /recflddescr/
byte type Idata type
integer*2 size Ibytes per element
integer*4 offset Ibyte offset from beginning of record
byte addressmode Idirect or indirect
byte ndims Inumber of dimensions (l - 8)
integer*4 dl Isize of dimension #1

integer*4 d8 Isize of dimension #8

end structure

Accessing more than NDIMS dimensions will yield unpredictable results.

Three addressing modes shall be distinguished: i) Direct
(ADDRESSMODE = 0); ii) Indirect/pointer (ADDRESS MODE = 1); and iii)
Indirect/descriptor (ADDRESS MODE = 2). In Direct mode access, a data
item of TYPE, SIZE, NDIMS, and D1,...Dn (n.le.8) is located at OFFSET
bytes in contiguous memory from the starting byte of the actual
record. In Indirect/pointer mode access, the data item that is stored
contiguosly with the rest of the record is a longword pointer to the
actual location of the data associated with the field. In this case,
TYPE, SIZE, NDIMS, and Dl,...Dn (n.le.8) refers to the actual data
associated with the field. In Indirect/descriptor access mode, the
data item that is stored contiguosly with the rest of the record is a
DATADESCR of data associated with the field.

Default access to all fields is to the actual data associated with the
field. That is, if data are stored in either of the two indirect
modes, the actual address of the associated data is resolved and those
data are accessed. Access to the actual pointer value or DATADESCR
Lan be made by appending a "@" character to the name of the field (a

IGORE Design Description Page 7
DEFINITIONS AND TERMINOLOGY 3 February 1989

warning will be issued in this case if the field contains actual data,

i.e. is flagged ADDRESSMODE - direct).

3.1.6 Dynamic IGORE Record Descriptor: DYNAMRECDESCR

This shall refer to a record containing information needed to access a
given declared IGORE record variable. Every record declared
dynamically in IGORE will have a DYNAMRECDESCR associated with it.
IGORE will maintain a these records in the DYNAMRECDESCRTABLE,
adding new entries each time a new record is declared. The
DYNAMRECDESCR can be accessed with the following structure:

structure /dynam-rec_descr/
integer*2 table index laddress in the table for access
byte nchar no. of character in name
character*15 name Irecord name = name(l:nchar)
byte rectype Irecord type (translated mnemonic)
integer*4 recptr Ipointer = address of first byte
integer*4 totalsize Itotal number bytes (.ge. 1 record)
integer*4 recsize Ino. bytes per record
integer*2 nrec Ino. of records (1-dim arrays only)
integer*4 strdescr_ptr Ipntr to STRUCDESCR for this rectype

end structure

All IGORE records will be represented in IDL as IDL scalar or vector
(1-dimensional arrays) longword variables. Each longword value will
consist of an 1*2 number pointing to the table index of the associated
record (TABLEINDEX) and an 1*2 number corresponding to the
record-vector index. For example, a single record element variable
will be an IDL scalar longword; the first 1*2 number will point to the
table index for this variable, the second will be set to one (1). An
array of records (1-dimensional) will be an IDL longword array. The
first 1*2 portion of each array element will have the same value: the
table index of this variable; the second 1*2. number in each element
will be its index in the array. RECPTR and RECSIZE can be accessed
once the table index is known. The address of the Nth record element
in an IGORE record array is REC PTR + (N-l) * RECSIZE. Of course N
must with in the range of NREC.

For passing entire record arrays or contiguous subarrays of record
arrays, the total size is computed according to (N_LAST - N FIRST + 1)
* RECSIZE, where NFIRST and NLAST are the first and last indeces in
the array or subarray (and are in the range of NREC).

3.2 General Terminology

IGORE Design Description Page 8
IDL 3 February 1989

4 IDL

4.1 IDL Variables

4.2 IDL Functions And Procedures

4.3 Linking FORTRAN Applications To IDL

IGORE Design Description Page 9
STRUCTURES AND RECORDS 3 February 1989

5 STRUCTURES AND RECORDS

The current version of VAX IDL does not provide support for
interactive stuctures and records. This section describes the design
of IGORE structures and records developed to run under IDL. Most of
this section deals with the definition and interactive manipulation of
IGORE structures and records. Passing records to applications is
discussed in the section on AFEs, although it is mentioned briefly
here as well.

5.1 Design Description Overview

First a note concerning terminology. The term Structure refers to the
definition of a particular data structure, analogous to a data
structure defined within a FORTRAN STRUCTURE/END STRUCTURE block. The
term Record refers to the implementation of a particular structure
through a declaration, analogous to the FORTRAN RECORD
/<DefinedStructure>/ DECLAREDRECORDNAME statement. IGORE shall
provide a means for dynamically defining new structures. The
declaration of of records shall also be dynamic; that is, any number
of records can be interactively declared, each corresponding to a
previously defined structure.

5.1.1 Structure Design

The core of the IGORE structures design is the structure descriptor.
All records declared to be of a particular structure type share the
same structure descriptor. The structure descriptor for a particular
structure type is accessed each time a record of that structure type
is being accessed interactively. Structure descriptors are discussed
in the next subsection. Dynamic access, interactive definition, and
management of structures are discussed in subsequent subsections.

5.1.1.1 Structure Descriptors

The structure descriptor, referred to as STRUCDESCR, is actually a
concatanation of variable-lengh descriptors, one for each of the
fields defined in the structure. The first part of each field
descriptor is a delimited character string which names the field; the
second part each field descriptor describes how the data are organized
in the field. Every full structure descriptor is preceded by an
eight-byte VAX dynamic string descriptor in order to allow the entire
structure descriptor to be accessed as a single character string.

Data in a given field of a record of a particular structure type is
referred to as either Direct of Indire't, according to where it is
located with respect to the data in the j Jr fields of that record.
The Direct portion of a record is contiguous block of memory
containing: 1) the actual data associated with each field; 2) a
pointer to the actual data which resides outside the contiguous block
of memory; or 3) a data descriptor (DATADESCR) for the actual data
which resides outside the block of contiguous memory. The Indirect
portion is the actual data which is not located in the same contiguous
bloc of memory as the Direct portion, but is pointed to by either a

IGORE Design Description Page 10
STRUCTURES AND RECORDS 3 February 1989

pointer or a data descriptor in the Direct portion. Each field in a
structure is accessed in one of three primary or default modes. These
are:

1. Direct mode. In this mode, the field descriptor describes
data located in the Direct portion of any record of the
particular structure type. The data are described by their
type, and the number and sizes of dimensions, if any.

2. Simple indirect (pointer) mode. In this mode, the field
descriptor describes data which is located in an Indirect
portion of any record of the particular structure type. The
data item located in the Direct portion of the record is the
starting address of the associated Indirect portion. The
data are described by their type, and the number and sizes of
dimensions, if any.

3. Complex indirect (data descriptor) mode. In this mode, the
field descriptor simply flags this data field to be
associated with a data descriptor, but contains no other
useful information about the associated data. The data item
located in the Direct portion of the record Is a DATADESCR
which describes the actual data associated .ch the field, as
well as the Direct portion of the record in which it (the
data descriptor) is embedded.

The actual data associated with the DATADESCR may either be
in memory, in which case the DATADESCR contains a pointer to
it; or the data may be in a disk file, in which case the
DATADESCR contains a pointer to a table which may be used to
access the disk file and the specific data. Such a table
will contain information such as FILENAME and TAGWORD.

All three modes may be combined in a given structure type (and hence
all records declared to be of this type). The default access to any
field will always be to the actual data associated with the field. It
is also possible to access pointers and data descriptors as data
entities (e.g., extract all the data descriptors from an array of
records -- direct and indirect data -- and construct an array of just
data descriptors).

5.1.1.2 Dynamic Access Of Strucutures

Structure descriptors are accessed as character strings. The first
eight bytes of every structure descriptor is a VAX dynamic string
descriptor. A single utility routine accesses all structure
descriptors, reading them into a CHARACTER*(*) variable.

A given field in a given structure descriptor is accessed by its name,
as stored in the variable-length name portion of each field
descriptor. The FORTRAN INDEX function is used to locate the field

IGORE Design Description Page 11
STRUCTURES AND RECORDS 3 February 1989

name. The field descriptor portion directly follows the field name,
and is accessed as a standard FORTRAN record whose fields completely
describe the associated data (type, number and size of dimensions,
etc.). The field descriptors which follow the field names may be
variable in length, even though they are accessed via a
standard-length FORTRAN record; one of the fields is the record
describes the actual length of the particular field descriptor
currently accessed.

5.1.1.3 Interactive Structure Definition

5.1.1.4 Structure Descriptor Table

5.1.1.5 Structure Descriptor Libraries

5.1.1.6 Structure Type Aliases

5.1.2 Record Design

5.1.2.1 Dynamic Record Descriptors

5.1.2.2 Associated Tables

5.1.2.3 Record Aliases

5.1.2.4 Interactive Record Operations

5.2 Modules And PDL

IGORE Design Description Page 12
APPLICATION FRONTEND (AFE) 3 February 1989

6 APPLICATION FRONTEND (AFE)

A fundamental task of IGORE is to pass and receive data between native
IDL variables and native FORTRAN variables in FORTRAN applications.
Every application that is to run under IDL shall be interfaced to IDL
via an Application Frontend (AFE). Although each application will
have its own AFE, the basic actions carried out are the same for all
AFEs.

The parameters to IDL function and procedure calls are IDL variables.
When the function or procedure is actually a FORTRAN application, the
IDL parameters passed in the call are received by the AFE, and each is
paired with a FORTRAN variable in the AFE. The FORTRAN variables to
which the IDL parameters are paired are in turn the arguments of the
application being interfaced (there may be additional arguments of the
application call which are not directly paired with IDL parameters to
the AFE call).

6.1 Design Description Overview

The design of the AFE is based upon a data structure called the
control record, CTRLREC. Each IDL-FORTRAN variable pair is
established via a CTRLREC; each AFE has an array of CTRLRECs, one
record for each pair. Several parameters in the CTRL REC determine
the specific actions required for the given pair during the general
data transfer for the entire collection of pairs in a given AFE.

There are five actions taken on each call to the AFE:

1. Establish the IGORE Condition Handler. This assures that any
subsequent errors are handled centrally.

2. Establish the pairing of IDL parameters, passed in the call
to the AFE, with their FORTRAN counterparts, which are the
parameters of the application being interfaced to IDL via the
AFE. Each pair is established in a record defined by the
structure CTRLREC, and a list of these records, one list
entry per pair exists in each AFE. On each call to the AFE,
the leading ten parameters in each record are initialized;
some of these ten are initialize only once, on the first call
to the AFE. The list is then passed to AFE routines which
check and set the CTRL REC parameters in preparation for data
transfer.

3. Pair checking. The heart of the AFE design is the
interpretation and modification of the parameters in each
CTRLREC. These parameters determine the validity of the
transfer, make requests for any necessary conversion between
data types, set parameters used in actual moving of data
between memory locations (when necessary), allocate and free
virtual memory, etc. The Rintelligence" of the AFE is
determined by the CTRLRECs.

IGORE Design Description Page 13
APPLICATION FRONTEND (AFE) 3 February 1989

4. Data transfer. Once each CTRLREC has been set up,
data-transfer action can be taken. Two data-transfer actions
are taken: one before the call to the FORTRAN application to
make any required transfers of data from the IDL variables to
their FORTRAN counterparts, and one after the call to make
any required reverse transfers. The modes of transfer may
include: moving data from one location to another, moving
and type-coverting data, creating new main-level IDL
variables to receive output, passing pointers of IDL-variable
data locations to the FORTRAN application, allocating dynamic
memory for execution-time dimensioned record arrays in the
FORTRAN application, freeing allocated memory, and
redimensioning IDL variables according to possibly
redimensiorad sizes of their FORTRAN counterparts by the
FORTRAN application.

5. Calling the FORTRAN application. The parameters in the call
are pointers passed by value (ZVAL). The actual values of
the pointers are set by the checking routines. A given
pointer may be the address of: the actual FORTRAN variable
normally used in the call, first byte of an IDL variable's
data, or the first byte of dynamically allocated memory.
Each of these parameters is associated with an IDL-FORTRAN
pair. When ever possible, only pointers to the IDL data are
passed to the application and no actual moving of data
between memory locations is carried out. Additional
arguments of the application may be the dimensions of passed
arrays, used for execution-time dimensioning of these arrays
in the FORTRAN application and/or for returning new dimension
sizes used to redimension the associated IDL variable (if
it's an output variable). Passed dimensions may or may not
also be explicit parameters in the IDL call to the AFE.

6.1.1 CTRL_REC Structure And Parameter Descriptions

Shown below is a listing of the CTRL REC STRUC.ICL include file which
defines the structure of the CTRLREC. The subsections that follow
the listing describe each of the parameters in the CTRL REC.

c+++ BEGIN CTRLRECSTRUC.ICL INCLUDE FILE ++++++++++++++++++++++++++++++

c... This is CTRL_REC_STRUC.ICL file.
c
c The structure defined here contains pointers, memory
c allocation requirements, and control flags used by
c all IGORE AFEs when transferring data between IDL parameters
c and FORTRAN parameters. Each IDL-FORTRAN pair in a given AFE has
c associated with it a record of this structure; each AFE has
c a list of these records, one list entry per pair.
c
c Upon the first call to the AFE, the first seven parameters in each of
c the records of the list are initialized. On subsequent calls, only
c the 8th, 9th, and 10th parameters need to be reset. The list is then

IGORE Design Description Page 14
APPLICATION FRONTEND (AFE) 3 February 1989

c passed to AFE utilities which setlread various other record parameters
c and ultimately take data-transfer action according to control parameters
c in each record. Not all record parameters are applicable to every pair.
c
c Some default values of parameters which may be used in any AFE are
c also set here in FORTRAN PARAMETER statements.

c... XFER directions and null arraydims pointer

byte in
byte out
byte inout
byte noxfernecessary
integer*4 noarray
parameter (in=l)
parameter (out=2)
parameter (in_out=3)
parameter (no xfer necessary=4)
parameter (no array-0) Ino dims to pass

c... The CTRLREC structure definition:

structure /ctrl_rec
union

map
integer*4 forvar dptr Ipointer to descr of for var
integer*4 fornam dptr Ipointer to descr of its name
integer*4 idlvardptr Ipointer to descr of idlvar
integer*4 arraydimsptr Ito adjust output idl arrays
logical*l req_opt Irequired (T) or optional (F)
logical*l recordparam lis this a record? T or F
integer*2 cony_mask Ibits control enabled modes
logical*l idlparam rcvd Iwas param passed? T or F
byte iodir Ixfer direction for this pair
integer*2 cony_mode Ibits control active modes
integer*2 cony flag Ibits control action per xfer
integer*4 for_varptr Ipointer fortran variable
integer*4 idlvarptr Ipointer to idl-var's data
integer*4 paramptr Ipointer to applic's param
integer*4 forvarsize Itotal bytes in forvar
integer*4 idlvar_size Itotal bytes in idlvar data
integer*4 nbytes Ibytes when using LIB$GET_VM
integer*4 nrec Inumber of records to pass
logical*l for_varinit Ifor-var initialized? T or F

end map
map

character*55 pak laccess all at once
end map

end union
end structure

c+++ END CTRL REC STRUC.ICL INCLUDE FILE ++++++++++++++++++++++++++++++++

IGORE Design Description Page 15
APPLICATION FRONTEND (APE) 3 February 1989

6.1.1.1 FORVAR DPTR

This is a pointer (address of) to the VAX descriptor (prototype
portion only; i.e., first two longwords) of the FORTRAN variable of
the IDL-FORTRAN pair. This parameter is set by the character function
BUILDPAIR, called directly from the AFE.

6.1.1.2 FORNAM_DPTR

This is a pointer to the VAX descriptor of the ASCII name of the above
FORTRAN variable. For example, if the name of the variable is
LIVETIME, the FORNAMDPTR points to a descriptor of the string
"LIVETIME". This parameter is set by character the function
BUILDPAIR, called directly from the AFE.

6.1.1.3 IDL VARDPTR

This is a pointer to the IDL variable's descriptor. IDL scalars
(excluding strings) have their actual values embedded in their
descriptors. IDL arrays have embedded in their descriptors a pointer
to a standard VAX array descriptor associated with the actual data.
IDL strings have embedded in their descriptors standard VAX dynamic
string descriptors (size, type, class, pointer to start of character
data). This parameter is set by the character function BUILDPAIR,
called directly from the AFE.

6.1.1.4 ARRAYDIMS_PTR

This is a pointer to a dimension-size array in the compiled AFE. All
subscripted FORTRAN variables in the AFE have associated with them:
i) one 1*4 variable for each dimension, containing the size of the
associated dimension; ii) a dimension-size array containing in its
first element the total number of declared dimensions, and in its
remaining elements the addresses of the 1*4 variables containing the
sizes of the dimensions (item i). The pointer to the dimension-size
array in the CTRLREC gives the AFE routines access array dimensions
before and after the application call. If ADJUST OUTPUTSIZE or
CONVERTONOUTPUT is set in CONVFLAG (see CONV_MODE below), the
dimension-size array is used to redimension the IDL array (if it is
output). The dimensions of the FORTRAN array must be passed to the
FORTRAN application in order to use this capability; i.e., the
application must return modified values of the sizes of any arrays for
which redimensioning of IDL counterparts is to take place. On every
call to the AFE the values of the 1*4 dimension-size variables (item
i) are reset to their initial values. The value of the pointer is set
in the character function character BUILDPAIR, called directly from
the AFE.

6.1.1.5 REQOPT

This parameter determines whether or not the supply of the IDL
parameter by the main-level IDL call to the AFE is required or
optional. Required parameters which are not supplied are prompted
for; optional parameters which are not supplied are set to defaults if

IGORE Design Peecripticn Page 16
APPLICATION FRONTENt (AFE) 3 February 1989

their FORTRAN counterparts have been initialized (see FOR VARINIT
below) or prompted for otherwise. This parameter is set by the
character function BUILDPAIR, called directly from the AFE; its value
is set at coding time as a programmer option.

6.1.1.6 RECORDPARAM

This parameters flags the associated parameter either as a record
variable (RECORDPARAM - TRUE) or a "standard" IDL variable
(RECORDPARAM= FALSE). The value of the flag controls action taken
by the checking routines. This parameter is set by the character
function BUILDPAIR, called directly from the AFE; its value is set at
coding time as a programmer option.

6.1.1.7 CONVMASK

This parameter controls which of the conversion modes in CONV_MODE may
be enabled and disabled interactively (see CONV_MODE below). Each bit
is associated with the same mode as the corresponding bit in
CONV MODE. A bit value of 0 indicates that the associated mode is
disabled and may not be enabled interactively within IGORE; the value
of the corresponding bit in CONVMODE is always 0 in this case. A bit
value of 1 indicates that the associated mode may be enabled and
disabled interactively; the default value of the corresponding bit in
CONVMODE may be 0 or 1.

This parameter is set by the character function BUILD_.PAIR, called
directly from the AFE; its value is set at coding time as a programmer
option.

6.1.1.8 IDLPARAMRCVD

This parameter flags whether or not the IDL parameter was actually
supplied on a given call to the AFE. The convention for determining
the value of this flag is to assume that trailing parameters were not
passed if the actual number passed is less than the number expected.
No place-holders are allowed. For example, if eight parameters are
expected (compiled in the parameter list of the AFE) and only four are
passed, IDLPARAMRCVD will be set TRUE for the first four parameters,
and FALSE for the last four. This parameter is set by the character
function BUILDPAIR, called directly from the AFE.

6.1.1.9 IODIR

This parameter controls the direction of transfer for the associated
IDL-FORTRAN pair. The possible values are as follows:

1. 10_DIR = 1 ... IDL-to-FORTRAN only. The value of the IDL
variable is preserved; the IDL parameter is ignored when data
are transferred from the FORTRAN variables after return from
the FORTRAN application.

IGORE Design Description Page 17
APPLICATION FRONTEND (AFE) 3 February 1989

2. IODIR - 2 ... FORTRAN-to-IDL only. The IDL parameter
receives output only; the IDL parameter need not exist prior
to the IDL call to the AFE. The specific actions taken
depend on whether or not the IDL parameter already exists
when the IDL call to the AFE is made, and on specific
settings in the CONVMODE.

3. 10 DIR = 3 ... IDL-to-FORTRAN and FORTRAN-to-IDL. Data are
tranferred between the members of the IDL-FORTRAN pair on
both transfers: before and after the call to the FORTRAN
application.

4. 10_DIR - 4 ... No tranfer necessary in either direction.
This is not an error condition. It is used when the pointer
to the actual IDL data (see IDL VARPTR below) is passed to
the FORTRAN application or when an optional input-only
(10_DIR = 1) parameter has not been passed but has already
been initialized.

5. IODIR - 0 ... Illegal transfer request. No transfer will
take place, and the AFE will abort before calling the FORTRAN
application.

In addition, the values -1, -2, and -3 indicate that some kind of type
conversion is necessary on transfers with IODIR - 1, 2, or 3,
respectively.

This parameter is set by the character function BUILDPAIR, called
directly from the AFE. On every call to the AFE, the value is reset
to an initial value of 1, 2, or 3; the value subsequently may be
modified by the checking routines. The initial value is supplied at
coding time as a programmer option.

6.1.1.10 CONVMODE

This parameter controls which type conversion modes are enabled for
the associated IDL-FORTRAN pair. Each bit controls the
enabling/disabling of a unique mode. Bit values of 1 (0) enable
(disable) the associated mode. All numeric conversions between one-,
two-, four-, and eight-byte data elements are supported (excluding
COMPLEX*8). Four additional conversion actions may be flagged:
ACCEPTSMALLERSOURCE, CONVERTONOUTPUT, ADJUSTOUTPUTSIZE, and STRG
(string-to-string transfers). See the section below on
CONVERSIONMNEMONICS for the bit settings and associated conversions,
and details on conversion actions.

This parameter is set by the character function BUILDPAIR, called
directly from the AFE; its value is set at coding time as a programmer
option and may be reset interactively within IGORE, subject to the
value of CONVMASK (next item).

IGORE Design Description Page 18
APPLICATION FRONTEND (AFE) 3 February 1989

6.1.1.11 CONVFLAG

This parameter controls the conversion mode which is to be active for
the associated IDL-FORTRAN pair on any given call to the transfer
routines (activated by an actual call to an AFE). This parameter is
set by the checking routines.

6.1.1.12 FORVARPTR

This is a pointer to the actual FORTRAN variable compiled in the AFE
code. When transfer is required, this pointer is a source and/or a
destination. For strings, FORVARPTR is the address of the string's
descriptor. This parameter may also be a reference to dymanically
allocated memory. This parameter is set by the checking routines.

6.1.1.13 IDLVARPTR

This is a pointer to the actual data associated with the IDL variable.
When transfer is required, this pointer is a source and/or
destination. For strings, IDLVARPTR is the address of the string's
descriptor. This parameter is set by the checking routines.

6.1.1.14 PARAMPTR

This parameter is the pointer that is passed by value (ZVAL) to the
FORTRAN application. It is set in the checking routines. Its value
is either FORVARPTR, IDL..VAR_.PTR, or the starting address of
dynamically allocated memory returned by a call to LIB$GET_VM.

6.1.1.15 FORVARSIZE

This parameter is the total number of bytes of data associated with
the FORTRAN variable. It is set by the checking routines. Its value
is either the compiled size of the FORTRAN variable, or the number of
bytes used in a request for dynamic memory allocation.

6.1.1.16 IDLVARSIZE

This parameter is the total number of bytes of data associated with
the IDL variable. It is set by the checking routines.

6.1.1.17 NBYTES

This parameter is the total number of bytes used in a request for
dynamic memory allocation (when such a request is necessary). It is
set by the checking routines.

6.1.1.18 NREC

This parameter is the total number of records in an array of records
to be passed to the FORTRAN application. Its value may be either the
number of records in the associated IDL record array or a default set
in the dimension-size array (see ARRAYDIMSPTR above). It is set by
the checking routines.

IGORE Design Description Page 19
APPLICATION FRONTEND (AFE) 3 February 1989

6.1.1.19 FOR VARINIT

This parameter indicates whether or not the FORTRAN counterpart of an
optional IDL parameter has been initialized. If an optional parameter
is not passed and FORVAR INIT is TRUE, then no transfer takes place
(10_DIR = 4) and PARAMPTR is set to FORVARPTR, causing the previous
value of the FORTRAN variable to be passed to the FORTRAN application.
If FORVARINIT is FALSE, then the user is prompted to supply the IDL
parameter.

6.1.1.20 PAK

This is a character map of the entire structure of the CTRL_REC to
enable accessing the record its entirety, and packing its fields with
single calls to character functions.

6.1.2 Parameter Classifications

Parameters of all IDL function and procedure calls are IDL native
variables. The supported data types are: byte, 1*2, 1*4, R*4, R*8,
COMPLEX*8, and strings. Arrays of up to eight dimensions of any of
these types are also supported. In the AFE, the FORTRAN counterparts
of the IDL parameters may be any of the corresponding data types or,
in addition, a representative of a structured record. The actions
taken by the AFE and its called routines depend on how the IDL-FORTRAN
pair elements match. A parameter pair is classified as variable type
if its FORTRAN element is one of the supported IDL types; or it is
classified as a record type if its FORTRAN element is a representative
of a VAX structured record. In addition, all parameters are
classified as required or optional.

6.1.2.1 Variables

Variables include all string, and one-, two-, four-, and eight-byte
numeric type scalars and arrays. The FORTRAN element in each
IDL-FORTRAN pair is declared in the AFE with its type and dimensions.
The type corresponds to the type expected in the application. String
element lengths are declared in the AFE and are passed to the
application (i.e., declared in the application as CHARACTER*(*)) or
declared with the same length in the AFE and in the application.

For arrays of all types, the dimensions are passed to the application
for execution-time dimensioning. Arrays passed as parameters to
applications should not be declared with hard-wired dimensions in the
application; they must not be declared with hard-wired dimensions if
passed dimensions are also passed as parameters to the application.

The memory compiled in the AFE for each declared FORTRAN variable may
or may not be used on a given call to the AFE. Usage depends on the
transfer direction mode of the variable (see below), whether or not
type conversion is required, and whether or not dimensions of arrays
are modified by the application (in this case, dimensions may only be
reduced in size).

IGORE Design Description Page 20
APPLICATION FRONTEND (AFE) 3 February 1989

6.1.2.2 Records

Records are declared in the application to be of a type defined in a
FORTRAN STRUCTURE statement construction. They must be dimensioned
symbolically with a parameter that is passed as an argument tn the
application. In the AFE, the corresponding records are represented by
character strings which are set to string mnemonics for the particular
structure types of the declared records in the application. Each
structure type has a unique mnemonic.

No static allocation is compiled in the AFE for records. The AFE
passes only pointers to the memory locations of records and the
dimensions of record arrays to the application. The pointers are
addresses either of existing IGORE records, memory allocated
dynamically by the AFE routines into which IGORE records are
transferred, or memory allocated dynamically by the AFE routines as
temporary buffer space for the application. For records designated as
OUTPUT ONLY (see the next section), the IGORE record need not exist
prior to the call to the AFE. In this case, the AFE must include a
default dimension size in order to allocate a default storeage space
for the application.

VAX IDL currently does not support records and structures. IGORE does
support records and structures, and uses native IDL 1*4 variables to
represent IGORE records at the IDL command level (see section 4
above). The IDL variables used to represent IGORE records shall be
referred to as RECORD ALIASES. As far as IDL is concerned, a record
alias is just an 1*4 variable. It is possible to give an IGORE record
a unique name, but manipulation of records at the IDL command level is
accomplished only through record aliases; it is not possible to
restrict the number of aliases that a given record may have.

6.1.2.3 Required And Optional Parameters

All parameters in the IDL call to the AFE are additionally classified
as require or optional. The designation is determined at AFE coding
time as a prograner option. Only INPUT ONLY parameters may be
designated as optional. Also, in the argument list of a given AFE,
only the trailing parameters in the list may be designated as
optional.

Required parameters are those which must be supplied explicitly on
each and every call to the AFE. If not supplied, the user will be
prompted to supply them. Optional parameters are those which must be
initialized on at least one call to the AFE, but need not be supplied
explicitly on subsequent calls. The initialization may occur in the
statement which declares the FORTRAN element of the IDL-FORTRAN pair
in the AFE at compilation time. Explicity supply of optional
parameters overrides previous initialized values and updates the
initialized values for subsequent calls.

IGORE Design Description Page 21
APPLICATION FRONTEND (APE) 3 February 1989

6.1.3 Parameter Transfer Direction Modes

Three basic transfer direction modes are distinguished: input only,
output only, and input/output. The mode of a particular parameter is
determined at APE coding time as a programmer option. In certain
specific cases, no actual transfer of data between memory locations
may be required, and only pointers to the data are passed. This mode
of transfer is referred to as NO TRANSFER NECESSARY. All string-type
variables, whether scalar or arrays, always require data transfer.
Some transfers are not allowed at all and are flagged as ILLEGAL
TRANSFERs; no actual moving of data is carried out and the AFE aborts.

6.1.3.1 Input Only

This mode of transfer is flagged with the mnemonic IN; the value is 1.
The value of the IDL input parameter is unchanged by these transfer
because the application is guaranteed to use its own copy of the data.
Specific action depends on whether the parameter is classified as a
variable or as a record.

For variable-type parameters, the application is always passed a
pointer to the FORTRAN element in the IDL-FORTRAN pair. On a given
IDL call to the AFE, actual transfer of data from the input IDL
parameter to the FORTRAN counterpart is required or not according to
the specific situation:

1. If the parameter is required, then data from the input IDL
parameter are always transferred to the FORTRAN counterpart.
If the parameter is not sLpplied explicitly in the IDL call
to the AFE, the user is prompted to supply it.

2. If the parameter is optional and supplied explicitly in the
call, then data from the input IDL parameter are transferred
to the FORTRAN counterpart.

3. If the parameter is optional and not supplied explicitly in
the call and the FORTRAN counterpart has previously been
initialize, then no tranfer is made; the transfer is flagged
NO TRANSFER NECESSARY.

4. If the parameter is optional and not supplied explicitly in
the call and the FORTRAN counterpart has not previously been
initialize, then the user is prompted to supply it.

5. If data are to be transferred and type conversion is required
and allowed by the CONVMODE in the CTRLREC, IN is set to
-IN.

For record-type parameters, the application is always passed a pointer
to the dynamically allocated memory contain a copy of the input IGORE
record and the number of record elements therein. On a given IDL call

IGORE Design Description Page 22
APPLICATION FRONTEND (AFE) 3 February 1989

to the AFE, actual transfer of the IGORE record to this memory is
required or not depending on the specific situation:

1. If the parameter is required, then the requisite memory is
allocated and the input IGORE record (direct and indirect
portions) is copied into this space. If the parameter is not
explicitly supplied, then the user is prompted to supply it.

2. If the parameter is optional and explicitly supplied, then
any previous memory allocation containing initialized data is
freed, the requisite memory for the newly-supplied record is
allocated and the input IGORE record (direct and indirect
portions) is copied into this space.

3. If the parameter is optional and not supplied explicitly in
the call and the FORTRAN counterpart has previously been
initialize, then no tranfer is made; the transfer is flagged
NO TRANSFER NECESSARY.

4. If the parameter is optional and not supplied explicitly in
the call and the FORTRAN counterpart has not previously been
initialize, then the user is prompted to supply it.

6.1.3.2 Output Only

This transfer mode is flagged with the mnemonic OUT; the value is 2.
Output only parameters need not exist at the time of a given IDL call
to the AFE. The specific actions allowed and/or taken depend on
whether the parameter is a variable or a record, and whether it exists
prior to the call to the AFE.

For variable-type parameters the possible actions are as follows:

1. If the IDL variable does not exist, a pointer to the FORTRAN
element of the IDL-FORTRAN pai: will be passed to the
application along with the default dimensions (if any) for
that variable. The AFE routines will create an appropriate
IDL variable during the output transfer after the application
has returned to the AFE; the name of the variable will be
that of the explicitly passed but undefined parameter.
Actual transfer of data will take place.

2. If the IDL variable does exist and is of the same type as the
FORTRAN counterpart and the dimension-mapping rules are
satisfied (see Transfer of Dimensions below), a pointer to
the IDL data and its dimensions (if any) will be passed to
the application. If the dimensions are not modified by the
application, no transfer of data will take place. If the
dimensions are modified (reduction in size is the only
allowable modification), the IDL variable is recreated to

IGORE Design Description Page 23
APPLICATION FRONTEND (APE) 3 February 1989

have the new dimensions and the data are transferred to the
redimensioned variable.

3. If the IDL variable does exist but is of different type than
the FORTRAN counterpart, the case reverts to that of an
undefined IDL variable as long as the CONVMODE allows for
CONVERTONOUTPUT (see Conversion). Otherwise, an ILLEGAL
TRANSFER is flagged.

For record-type parameters the possible actions are as follows:

1. If the record does not exist, a default dimension in the AFE
is used to dynamically allocate memory and a pointer to this
memory, along with the default dimension, is passed to the
application. The transfer direction mode is set to -OUT.
Upon return from the application to the AFE, a new IGORE
record is created and name of the explicitly-passed parameter
is used as the record alias. Actual data transfer takes
place in this case. The application may return a smaller
number of records than the default supplied by the AFE. In
this case, if CTRL$ADJUSTOUTPUTSIZE is set (see Conversions
below) the newly-created IGORE record array will be the
corrected size, and not the size of the default.

The memory allocated by the AFE routines for the direct
portion of the record(s) is released after the IGORE
record(s) is (are) created and the data in the dynamic memory
transferred. Any indirect portions of the record(s) do not
get transfer; their pointers are simply inherited by the new
IGORE record.

2. If the record does exist and is of the same type as that in
the application (as determined by the FORTRAN string mnemonic
in the AFE), a pointer to the IGORE record along with the
dimension is passed to the application. No actual transfer
of data takes place. No redimensioning is allowed in this
case because the existing record may be intermediate elements
of a larger record array.

3. If the record does exist but is of a different type than that
in the application, the transfer is flagged as ILLEGAL
TRANSFER.

6.1.3.3 Input/Output

This transfer mode is flagged with the mnemonic OUT; the value is 2.
The IDL variable must exist prior to the call to the AFE. The
specific actions allowed and/or taken depend on whether the parameter
is a variable or a record, and whether it exists prior to the call to

IGORE Design Description Page 24
APPLICATION FRONTEND (AFE) 3 February 1989

the AFE.

For variable-type parameters the possible actions are as follows:

1. If the IDL parameter is of the same type as its FORTRAN
counterpart and the dimension-mapping rules are satisfied
(see Transfer of Dimensions below), a pointer to the IDL data
along with its dimensions are passed to the application. No
actual transfer of data takes place and no redimensioning is
ever allowed.

2. If the IDL parameter is of a different type than its FORTRAN
counterpart, then number of elements in both must be exactly
the same in addition to the contraint that the
dimension-mapping rules are satisfied, otherwise an ILLEGAL
TRANSFER is flagged. If these conditions are met, then the
input IDL parameters are flagged for the appropriate
conversion if allowed by the CONVMODE; if not allowed an
ILLEGAL TRANSFER is flagged. Actual data transfer takes
place. On the input transfer, the data are converted from
the IDL type to the FORTRAN type. On the output transfer one
and only one of the remaining two items is carried out.

3. If CONVERT ON OUTPUT is set, then the IDL variable is
converted to the type of its FORTRAN counterpart.
Redimensioning of the number of elements is never allowed.
Actual data transfer takes place.

4. If CONVERT ONOUTPUT is not set, then the FORTRAN data are
converted back to the type of the original IDL variable.
Redimensioning of the number of elements is never allowed.
Actual data transfer takes place.

For record-type parameters the possible actions are as follows:

1. If the record does not exist, the user is prompted to supply
an exisiting record.

2. If the record does exist and is of the same type as that in
the application (as determined by the FORTRAN string mnemonic
in the AFE), a pointer to the IGORE record along with the
dimension is passed to the application. No actual transfer
of data takes place. No redimensioning is allowed in this
case because the existing record may be intermediate elements
of a larger record array.

3. If the record does exist but is of a different type than that
in the application, the transfer is flagged as ILLEGAL
TRANSFER.

IGORE Design Description Page 25
APPLICATION FRONTEND (AFE) 3 February 1989

6.1.3.4 No Transfer Necessary

This transfer mode is flagged with the mnemonic N0XFERNECESSARY; the
value is 4. It is used when no actual move of data between memory
locations is required, and only a pointer to the source data is passed
to the application. This mode is never flagged for string variables;
passing strings always involves moving data between memory locations.
The conditions for NOXFERNECESSARY are the following:

1. For input only parameters which are optional for which the
FORTRAN element of the IDL-FORTRAN pair has been initialized.
The pointer to the FORTRAN variable is passed to the
application, along with the dimensions (if any). This
condition holds for variable-type and record-type parameters.

2. For output only and input/output variable-type parameters, if
the types of the IDL-FORTRAN pair elements are the same and
the dimension-mapping (see Transfer of Dimensions below)
rules are satisfied, a pointer to the IDL data is passed to
the application, along with the dimensions (if any).

3. For output only and input/output record-type parameters, if
the IGORE record exists and is of the same type as the record
expected by the application, a pointer to the IGORE record
data is passed to the application, along with the dimensions
(if any).

6.1.3.5 Illegal Transfers

This transfer is flagged with a 0. The AFE routines should not get as
far as the transfer utilities if any of the parameter pairs are
flagged this way. If the data transfer routine does manage to get
called with any of the parameters flagged as illegal transfers, the
routine will abort. Conditions that cause this flag to be set are:

1. Source size larger than desination size for a requested data
move.

2. Conversion request that is not supported by IGORE or the
current setting of the CONVMODE.

6.1.4 Transfer Of Dimensions

When either or both of the elements in an IDL-FORTRAN pair is an
array, the dimensions -- number and sizes -- of the IDL array may have
to be transferred to the APE and passed on to the application. The
conditions under which transfer is required and the rules governing
such transfers are given here.

IGORE Design Description Page 26
APPLICATION FRONTEND (APE) 3 February 1989

6.1.4.1 Conditions Requiring Dimensions Transfer

A necessary condition for which dimension transfer may be required is
that either or both elements of the IDL-FORTRAN pair is an array. Any
one of the remaining conditions listed below in addition makes
transfer of dimensions required. The remaining conditions are:

1. All input only parameter transfers.

2. Output only and input/output variable-type parameter
transfers for which the data types of the IDL and the FORTRAN
variables match.

3. Output only and input/output record-type parameter transfers
for which the record types of the IGORE and the FORTRAN
parameters match.

Note that the requirement for dimension transfer does not guarantee
that the rules for dimension mapping are satisfied. These are given
in the next subsection.

6.1.4.2 Dimension-Happing Rules

Dimension mapping always refers to mapping dimensions of the IDL
variable passed to the AFE as a parameter to the FORTRAN variable in
the AFE. If the rules are satisfied for a given transfer, the
transfer is made; otherwise an error is signalled and the program
aborts. The rules for dimension mapping are as follows:

1. If the number of dimensions in both the IDL and FORTRAN
variables are the same, the values of the IDL dimensions are
transferred to the corresponding FORTRAN dimensions. This is
referred to as one-to-one mapping.

2. If the IDL variable is a scalar and the FORTRAN variable has
a single dimension, the value of the single FORTRAN dimension
is set to 1.

3. If the IDL variable is multiply-dimensioned and the FORTRAN
variable is singly-dimensioned, the value of the single
FORTRAN dimension is set to the total number of elements in
the IDL variable; i.e., the product of the IDL dimensions.
This is referred to as many-to-one mapping.

Note that there is no one-to-many mapping or many-to-differentmany
mapping.

IGORE Design Description Page 27
APPLICATION FRONTEND (AFE) 3 February 1989

6.1.5 Conversion And CONVERSIONMNEMONICS

IGORE shall support certain types of conversions between the IDL and
FORTRAN elements of IDL-FORTRAN pairs. The combination of supported
conversions applicable to a given pair is determined by the CONVMASK
and the CONV MODE in the CTRL_REC; the setting of these parameters is
a programmer option. CONVMASK is a compiled (static) code for the
conversions chosen by the programmer (from among those supported by
IGORE) to be applicable in general for a given pair. CONV_MODE is
essentially equivalent to CONVMASK except that it is dynamic within
the constraints of CONV_MASK. That is, a particular conversion in the
CONVMODE may be toggled (enabled/diabled) interactively as long as
that conversion is (statically) enabled in the CONV_MASK.

The specific conversion(s) required on a given transfer will be
determined by the CONVFLAG in the CTRL_REC. When a type or size
mismatch of pair elements is detected in the pair-checking routines of
the AFE, the routines attempt construct a conversion request with the
mnemonic CONV RQST which, if carried out, will remedy the mismatch.
If no CONV_RQST can be constructed to remedy the mismatch, the
specific transfer is flagged illegal. If a CONV_RQST can be
constructed, it is compared with the CONY_MODE to determine if the
requested conversion is permitted for this particular pair. If it is
allowed, the CONV FLAG is set to the CONV_RQST and at transfer time
the conversion specified in the CONV_FLAG is carried out. If not
allowed, the specific transfer is flagged illegal.

Conversions are classified as numeric or as special action. In either
case, a specific conversion is represented by a unique mnemonic; the
value of the mnemonics are given in the next subsection. In general,
the complete CONVMODE can be built by adding together the mnemonics
for each conversion; for numeric conversion, the conversion direction
is set in the high order bit, so both directions are represented by
setting the bit for the unidirectional conversion and also setting the
high order bit. Note that in all cases in which conversion is carried
out, data have to be moved between memory locations.

6.1.5.1 Numeric Conversions

IGORE supports numeric conversions between all one-, two-, four-, and
eight-byte data types (excluding strings and COMPLEX*8). The
conversions are done with MACRO conversion instructions whose
arguments are the memory addresses of the source and destination data
elements, the number of elements to convert, and a MACRO mnemonic
specifying the type of conversion required.

The IGORE mnemomics for numeric conversion are defined by setting one
bit in the CONVMODE to specify the data types of the two elements
involved in the conversion, and by a one or zero in the high order bit
(bit 15) to specify the direction (source and destination) of the
conversion. All possible numeric conversions are set in CONV_MODE by
adding all the mnemonics for the unidirectional conversion and setting
bit 15 to specify bidirectionality for all those conversions.

IGORE Design Description Page 28
APPLICATION FRONTEND (AFE) 3 February 1989

The mnemonics for numeric conversions are given in the next section
along with the special action conversions described in the following
section. Note that numeric conversions have no meaning for
record-type parameters.

6.1.5.2 CONVERSIONMNEMONICS Matrix

When a type mismatch is detected for a pair, a conversion request must
be constructed by selecting an appropriate conversion from among the
conversions supported by IGORE. The selection of the appropriate
numeric conversion mnemonic for a given type mismatch makes use of a
square matrix whose rows correspond to the IDL type, whose columns
correspond to the FORTRAN type, and whose elements are the mnemonics.
Each conversion mnemonic is connected to its inverse by reflection
about the diagonal of the matrix.

Mismatched pairs for which no conversion is allowed are designated
with the mnemonic NOOP, which will translate into an illegal transfer.
Diagonal elements of the matrix connect like types and, except for
string types, are also designated NOOP. The diagonal element
connecting two string types has the mnemonic STRG, signifying string
passing; string passing is handled as a special case. Except for
string-string "conversions," the conversion matrix is never accessed
for like types; illegal transfer is not flagged on the basis of the
matrix element NOOP for like types.

A simple one-statement algorithm is utilized that translates the type
code of any given parameter into its row or column index. The
algorithm is used twice for a given pair, once for the IDL parameter
and once for the FORTRAN parameter. The two resulting indeces specify
the mnemonic for conversion between the pair elements.

The CONVERSION MNEMONIC include file is listed below. The file
includes the conversion mnemonics and the CONVERIONMNEMONICS matrix.

c+++ BEGIN CONVERSIONMNEMONICS.ICL INCLUDE FILE ++++++++++++++++++++++++++++

c... CONVERSION MNEMONICS.ICL include file.
c This include file sets the values of the symbolic mnemonics which
c correspond to distinct conversion modes in IGORE. Each value is
c an 1*2 number with a single bit set. For the numeric type conversions,
c the mnemonic represents the conversion from the type of the first
c element to the type of the second element. When bit 15 is set,
c the mnemonic represents the inverse conversion.
c
c A matrix of conversion mnemonics for numeric type conversion is set up
c in the 8x8 array CONV MATRIX. The values reflected about the diagonal
c elements differ only in the parity of bit 15.
c Proper choice of indeces of the source and destination variables will
c result in the correct mnemonic for the convesion from source type
c to destination type.

c... Declare the mnemonics to be 1*2

IWOE Design Description Page 29
APPLICATION FRONTEND (AFE) 3 February 1989

integer*2 NOOP Ino conversion
integer*2 CTRL$ILLEGALCONVERSION Iflags illegal conversion
integer*2 B15 Ibit 15 only
integer*2 R814 1R*8 ->1*4 conversion
integer*2 R8I2 tR*8 ->1*2 conversion
integer*2 R8R4 1R*8 ->R*4 conversion
integer*2 R414 IR*4 ->1*4. conversion
integer*2 R412 1R*4 >1*2 conversion
integer*2 1412 11*4 ->1*2 conversion
integer*2 IMR 11*4 -- > R*8 conversion
integer*2 12R8 11*2 ->R*8 conversion
integer*2 R4R8 !R*4 ->R*8 conversion
integer*2 14R4 11*4 ->R*4 conversion
integer*2 IMR 11*2 ->R*4 conversion
integer*2 I21 11*2 ->1*4 conversion
integer*2 Bl12 1B*1 - 1*2 conversion
integer*2 Bl14 1B*l 1 1*4 conversion
integer*2 B1R4 1B*1 -- > R*4 conversion
integer*2 B1R8 IB*1 -- > R*8 conversion
integer*2 12B1 11*2 -- > B*1 conversion
integer*2 14B1 11*4 -- > B*1 conversion
integer*2 R4Bl 1R*4 -- > B*1 conversion
integer*2 R8Bl !R*8 -- > B*l conversion
integer*2 STRG If lag string variables
integer*2 CTRL$CONVERTONOUTPUT Iconvert IDL to FORTRAN type
integer*2 CTRL$ADJUSTOUTPUTSIZE Iresize IDL output
integer*2 CTRL$ACCEPTSMALLERSOURCE I input IDL size lt FOR size
integer*2 NUMCONVMASK Ipreserves bits (0-5,15) only

c ... Set the values (bits)

parameter (NOOP-O) mno bits set
parameter(CTRL$ILLEGAL-CONVERSION=0) Ino bits set
parameter(Bl5=-32768) Ibit 15 set
parameter(R814-1) Ibit 0 set
parameter(R812-2) Ibit 1 set
parameter(R8R4-4) Ibit 2 set
parameter(R414-8) Ibit 3 set
parameter (R412-16) Ibit 4 set
parameter(14I2-32) Ibit 5 set
parameter(14R8=R8I4+Bl5) Ibits 0 and 15 set
parameter(12R8-RSI2+Bl5) Ibits 1 and 15 set
parameter(R4R8-R8R4+Bl5) lbits 2 and 15 set
parameter(14R4-R4I4+Bl5) Ibits 3 and 15 set
parameter(12R4-R4I2+Bl5) Ibits 4 and 15 set
parameter(12I4-I4I2+Bl5) Ibits 5 and 15 set
parameter(Bl12-512) Ibit 9 set
parameter(Bl14-1024) Ibit 10 set
parameter(BIR4-2048) Ibit 11 set
parameter(BlR8-4096) Ibit 12 set
parameter(I2B-B112+B15) Ibits 9 and 15 set
parameter(14Bl-BlI4+Bl5) Ibits 10 and 15 set
parameter(R4B1-BlR4+B15) Ibits 11 and 15 set
parameter(R8B1=B1R8+B15) Ibits 12 and 15 set

IGORE Design Description Page 30
APPLICATION FRONTEND (APE) 3 February 1989

parameter(STRG-8192) Ibit 13 set
parameter(CTRL$CONVERTONOUTPUT-64) Ibit 6 set
parameter(CTRL$ADJUST_UTPUT_SIZE-128) Ibit 7 set
parameter(CTRL$ACCEPTSMALLERSOURCE-256) tbit 8 set
parameter(NUMCONVMASK-R8I4+R8I2+R8R4+R414

1 +R412+I412+B112+B114
2 +BlR4+B1R8+STRG+B15) Ibits 0-5,9-13,15 set

c... Declare and initialize CONVMATRIX

integer*2 convmatrix(8,8)

data cony matrix /NOOP,NOOP.NOOP,NOOP,NOOP,NOOP,NOOP,NOOP,
1 NOOP,NOOP,I2B1,I4BIR4Bl,R8Bl,NOOPNOOP,
2 NOOP,BII2,NOOP,I412,R412,R812,NOOPNOOP,
3 NOOP,BlI4,I214,NOOPR414,RI4,NOOP,NOOP,
4 NOOP,BlR4,I2R4,14R4,NOOP,R8R4,NOOP,NOOP,
5 NOOP,B1R8,I2R8,I4R8,R4R8,NOOP,NOOP,NOOP,
6 NOOPNOOP,NOOP,NOOP,NOOP,NOOP,NOOP,NOOP,
7 NOOPNOOP,NOOPNOOP,NOOPNOOP,NOOP,STRG/

c... That's all

c+++ END CONVERSIONMNEMONICS.ICL INCLUDE FILE ++++++++++++++++++++++++++++++

6.1.5.3 Special Actions

Four special action conversion mnemonics may also be included in
CONV_MASK, CONV_MODE, and CONVFLAG. These are described below.

1. STRG. This specifies that both elements in the IDLFORTRAN
pair are strings. STRG does not signify an actual
conversion, but simply directs the transfer routines to
execute the special handling required for passing strings.

2. CTRL$CONVERTONOUTPUT. This specifies the action required
on the output transfer after the application has returned to
the AFE. On input, the IDL the data contained in parameter
is always converted to the type of its FORTRAN counterpart
(within the constraints of CONV_MODE). On output, two
possible actions are possible: 1) convert the FORTRAN data
back to original type in of the IDL counterpart; or 2)
convert the actual IDL parameter to the type of its FORTRAN
counterpart. When CTRL$CONVERT ON OUTPUT is clear (not set),
the first option is used; when CTRL$CONVERT_ONOUTPUT is set,
the second option is used. Setting CTRL$CONVERTONOUTPUT
will also cause the dimensions of the FORTRAN variable to be
assigned to the converted IDL variable. This converion
action is only applicable to variable-type parameters; it has
no meaning for record-type parameters.

IGORE Design Description Page 31
APPLICATION FRONTEND (AFE) 3 February 1989

3. CTRL$ADJUST OUTPUT_SIZE. This specifies the action required
on the output transfer after the application has returned to
the AFE. If the types of the two elements in the IDLFORTRAN
pair are the same, but the dimensions are modified by the
application, then CTRL$ADJUSTOUTPUT SIZE specifies that the
output IDL parameter should be redimensioned according to the
new dimensions returned from the application. This
conversion mode is permitted only for OUTPUT-ONLY parameters;
that is, INPUT/OUTPUT parameters must maintain the same
number of data elements before and after the call to the
application. For variable-type parameters this mode is
equivalent to CTRL$CONVERT..ON..OUTPUT because it requires
redefining the output IDL parameter. This mode may be used
for OUTPUT-ONLY records in the special case where the output
record (or record array) did not exist prior to the call to
the AFE (see Ouput Only Records above).

4. CTRL$ACCEPTSMALLERSOURCE. This specifies the action
required on the input transfer before the call to the
application. If the IDL element of an input only pair is
smaller than the compiled size of its FORTRAN counterpart,
CTRL$ACCEPT_SMALLERSOURCE specifies that the transfer may
take place (provided the transfer does not violate any
conversion rules). In checking the total size of the input
IDL parameter, the AFE routines use the number of elements in
the IDL parameter, but the size per data element used is that
of the FORTRAN variable. This is because the IDL data may
first be converted before being transferred to the FORTRAN
variables address space. This mode should always be enabled
for passing strings unless it is imperative to match the
string sizes of the IDL and FORTRAN elements exactly.

6.2 Modules And PDL

There are 15 fundamental modules which make up the AFE routines, as
well as several routines which perform simple functions. In addition,
there are a number of calls made to other IGORE routines which are not
specific to parameter passing. The fundamental modules are listed
below, each with a brief description its purpose. The subsequent
subsections give the PDL for each module along with a list of other
modules called.

1. BLD PAIR. CHARACTER*20 function. Establishes the
IDL-FORTRAN pair in CTRLREC, initializes static (with noted
exceptions) parameters in CTRL_REC.

2. GET VAX DESCR. CHARACTER*8 function. This function receives
the address of a VAXDESCR an returns the prototype VAXDESCR
as a character string and number of array elements if
variable is an array.

IGORE Design Description Page 32
APPLICATION FRONTEND (AFE) 3 February 1989

3. GET IDLDESCR. CHARACTER*28 function. This function
receives the address of an IDLDESCR and returns the standard
IDLDESCR as character string, along with pointer to data,
length of data element(s), number of array elements if IDL
variable is an array, number and sizes of array dimensions.
All IGORE system routines use the current standard IDLDESCR
as returned by this function. Future modifications to the
IDL descriptor shall be accomodated in IGORE by modifying
GETIDL_.DESCR to translate the modified IDL descriptor into
the current standard IDLDESCR. If no IDLDESCR is found,
the data pointer, and array dimension number and sizes are
all set to zero.

4. CHECK PAIRS. Subroutine called from the AFE. This routine
receives the list of CTRL_RECs set up in the AFE by BLDPAIR.
It loops over each record performing all necessary checks and
setting appropriate parameters in each CTRLREC in
preparation for the transfer routines called later from the
AFE. CHECKPAIRS returns an array of status longwords, one
for each pair, and a single status longword signalling
success or failure. Failure causes the AFE to signal AOE and
to pass the status array to the ICH.

5. CRACKDESCR. INTEGER*4 function. This function receives a
single variable-type CTRLREC and cracks the VAX_.DESCR and
IDLDESCR associated with the record. GETVAXDESCR and
GETIDL.DESCR are used to crack the associated descriptors.
Several other parameters in the CTRLREC are set according to
the pointers, array sizes, etc. returned by GET VAXDESCR
and GETIDLDESCR. The return valueof CRACKDESCR is a
status longword signalling success or IDLDESCRNOTFOUND.

CRACKDESCR contains two alternate entry points, SETUP_XFER
and TYP_SIZ_CHK (see next two items). The entire module
(main and alernate entries) are set up to be reentrant
through the main entry point (CRACKDESCR) and through
TYP_SIZ CHK, by defining dummy functions which simply call
CRACKDESCR and TYPSIZCHK. The reentrant calling sequence
is: SETUP_XFER calls TYPSIZCHK (through one dummy
function), and TYP_SIZ_CHK calls CRACKDESCR (though the
other dummy function).

6. SETUPXFER. INTEGER*4 function; alternate entry point in
CRACKDESCR (see CRACKDESCR above). This function receives
a single CTRLREC then calls the core checking routine
TYP_SIZCHK, passing it the CTRL_REC. SETUPXFER then sets
the appropriate pointers, data transfer size, CONV FLAG, and
transfer direction mode (including possibly illegal
transfer), according to the status and the CONVRQST return
by TYPSIZ CHK and on the CONV_MODE. The return value of
SETUPXFER is a status longword signalling success or
failure.

IGORE Design Description Page 33
APPLICATION FRONTEND (AFE) 3 February 1989

7. TYPSIZCHK. INTEGER*4 function; alternate entry point in
CRACKDESCR (see CRACKDESCR above). This function is the
core checking routine for variable-type parameters. It
receives a single CTRLREC then calls CRACKDESCR (through a
dummy function; see above), which cracks the descriptors of
the pair elements and initializes various CTRLREC
parameters. TYPSIZCHK checks the sizes and types of the
pair elements, determines if conversion is required to remedy
any mismatches, then attempts to contruct an appropriate
CONVRQST. The return value of TYP SIZCHK is a status
longword signalling complete match, fixable mismatch (valid
CONV_RQST), or illegal mismatch.

8. XPERDIMS. INTEGER*4 function. This function receives the
dimension size array associated with the FORTRAN variable
(via ARRAYDIMSPTR passed by value) and the correponding
dimension sizes of the array associated with the IDL
parameter. If the dimension-mapping rules are satisfied, the
IDL dimensions are transferred to the FORTRAN dimension size
array. If not, an error condition is set. The return value
of XFERDIMS is a status longword signalling success or
failure.

9. RECORDPASSING. INTEGER*4 function. This function receives
a single record-type CTRLREC and takes the initial steps in
setting up record transfers. The IDLDESCR is cracked with a
call to GETIDLDESCR and the pointer value(s) in the
associated record alias is used to access the
DYNAMRECTABLE. If the IGORE record exists, array subranges
and memory requirements are determine. If the IGORE record
does not exist, the default dimension in the AFE is used to
determine memory requirements for output only parameters; or
an error is flagged for input only or input/output parameters
(these types must exist). If no errors have been encountered
to this point, the preparation for record passing is
completed by calling RECORDSETUP (next item). The return
value of RECORDPASSING is a status longword signalling
success or failure.

10. RECORDSETUP. INTEGER*4 function. This function receives a
single record-type CTRLREC and completes the preparation for
record passing initiated by RECORDPASSING. The actions
depend on whether the parameter is input only, exiting output
only, nonexisting output only, or input/output.

For input only, any previously allocated memory is freed, new
memory is allocated for the new incoming record, and the
appropriate pointers, memory size, and transfer direction
mode are set. For nonexisting output only, the requisite
memory is allocated and the appropriate pointers, memory
size, and transfer direction mode are set. For input/output
or existing output only, the PARAM PTR in CTRL REC is set to
the IGORE record address and the dimension NREC is set to
that associated with the IGORE record.

IGORE Design Description Page 34
APPLICATION FRONTEND (AFE) 3 February 1989

The return value of RECORD SETUP is a status longword
signalling success or failure.

11. XFER PARAMS. Subroutine called from the AFE. This is the
main transfer routine for both variable-type and record-type
parameters. It receives a transfer mode and the list of
CTRLRECs. The transfer mode specifies the mode in which
XFERPARAMS is called, not the transfer direction mode of any
given parameter pair (IODIR in CTRLREC). The two possible
tranfer modes of XFER PARAMS shall be referred to as
INPUTXFER for the call from the AFE prior to the call to the
application, and OUTPUT_.XFER for the call from the AFE after
the call to the application. INPUTXFER mode gets the IDL
data to the application; OUTPUTXFER gets the return data
from the application to the IDL variables which are the
parameters in the IDL call to the AFE.

XFERPARAMS loops over the entire list of CTRLRECs taking
any appropriate action on each parameter pair associated with
eact CTRL REC. Within the loop over records, six action
segments, referred to as Tranfer Branches, are distinguished.
On a given pass through the loop, only one transfer branch is
executed, depending on the transfer direction mode for the
specific pair (10_DIR) and the transfer mode in which
XFERPARAMS was called (INPUTXFER or OUTPUTXFER).

The transfer branches are: 1) illegal transfer; 2)
INPUTXFER mode and input only or input/output parameters
(variable-type and record-type; 3) OUTPUTXFER mode and
output only or input/output variable-type parameters; 4)
OUTPUTXFER mode and output only or input/output record-type
parameters; 5) OUTPUT_.XFER mode and NOXFERNECESSARY
parameter transfer direction mode (variable-type and
record-type); and 6) INPUT__XFER mode and NOXFERNECESSARY
parameter transfer direction mode (variable-type and
record-type). The action carried out by each of these is
described in the PDL section for XFERPARAMS.

XFERPARAMS returns a single status longword signalling
success or failure; failure causes the AFE to abort.

12. MOVIT. INTEGER*4 function. This function receives a source
and destination address and a source and destination total
size (in bytes), then moves the source data to the
destination address, provided the destination size is
sufficiently large to hold all the source data. The routine
calls the VMS RTL routine LIB$MOVC3 (repeatedly if necessary)
to move the data. The return value of MOVIT is a status
longword signalling success or failure.

13. CONVERTANDMOVE. INTEGER*4 function. This function
receives a source and destination address, a source and
destination total size (in bytes), and a CONVERSIONMNEMONIC.
If the size of the source data converted to the destination

IGORE Design Description Page 35
APPLICATION FRONTEND (AFE) 3 February 1989

data type (as specified by the supplied CONVERSIONMNEMONIC)
exceeds the destination size, then and error is flagged and
the routine returns to the caller. If no error condition is
detected and a numeric conversion is being requested, the
CONVERSION MNEMONIC is translated into a conversion code and
passed, along with the source and destination addresses and
number of source elements (less than or equal to the total
number of source bytes) to the CONVERT function (next item).
If the CONVERSION MNEMONIC is STRG, for string passing, MOVIT
is called using the source and destination addresses and
sizes in the respective string descriptors. The return value
of CONVERTAND_MOVE is a status longword signalling success
or failure.

14. CONVERT. INTEGER*4 function, written in VAX MACRO. This
routine receives a source and destination address, a total
number of elements, and a conversion code. If the conversion
code is recognized, the appropriate VAX MACRO instruction for
the requested conversion is executed in a loop over the total
number of elements. The return value of CONVERT is a status
longword signalling success or failure.

15. SET DIMBLK. INTEGER*4 function. This routine receives the
dimension-size array for a FORTRAN variable array (passed via
ARRAYDIMSPTR by value) and sets the corresponding array for
the IDL array in the return dimension-size array called
DIMBLK. The routine also returns the total number of bytes
in the FORTRAN variable array. The return value of
SET_DIMBLK is a status longword signalling success or
failure.

6.2.1 BLDPAIR

6.2.1.1 Modules Called

6.2.1.2 PDL

6.2.2 GETVAXDESCR

6.2.2.1 Modules Called

6.2.2.2 PDL

6.2.3 GETIDLDESCR

6.2.3.1 Modules Called

IGORE Design Description Page 36
APPLICATION FRONTEND (AFE) 3 February 1989

6.2.3.2 PDL

6.2.4 CHECKPAIRS

6.2.4.1 Modules Called

6.2.4.2 PDL

6.2.5 CRACKDESCR

6.2.5.1 Modules Called

6.2.5.2 PDL

6.2.6 SETUPXFER

6.2.6.1 Modules Called

6.2.6.2 PDL

6.2.7 TYPSIZCHK

6.2.7.1 Modules Called

6.2.7.2 PDL

6.2.8 XFERDIMS

6.2.8.1 Modules Called

6.2.8.2 PDL

6.2.9 RECORDPASSING

6.2.9.1 Modules Called

6.2.9.2 PDL

6.2.10 RECORDSETUP

6.2.10.1 Modules Called

6.2.10.2 PDL

6.2.11 XFERPARAMS

6.2.11.1 Modules Called

IGORE Design Description Page 37
APPLICATION FRONTEND (AFE) 3 February 1989

6.2.11.2 PDL

6.2.12 MOVIT

6.2.12.1 Modules Called

6.2.12.2 PDL

6.2.13 CONVERTANDMOVE

6.2.13.1 Modules Called

6.2.13.2 PDL

6.2.14 CONVERT

6.2.14.1 Modules Called

6.2.14.2 PDL

6.2.15 SETDIMBLK

6.2.15.1 Modules Called

6.2.15.2 PDL

IGORE Design Description Page 38
GENERAL TABLES FACILITY 3 February 1989

7 GENERAL TABLES FACILITY

IGORE's operation relies on various tables of information. A central
table utility manages all of IGORE's tables, keeping track of the
addresses of each tables extensions and the current entry count in
each table, allocating memory when new extensions are needed, etc. A
directory table provides access to other IGORE tables; it is described
in the next subsection. The subsequent subsections describe each of
the other IGORE tables.

7.1 Design Description Overview

7.1.1 Directory Table: DIRECTORYTABLE

This shall refer to the directory of all IGORE tables. The entries in
this table can be accessed with the following structure:

structure Idirectory_table/
character*15 tabletype Imnemonic for table type
byte nchar tactual length of mnemonic
integer*2 maxentries Imax no. entries per table extension
integer*2 entrysize Ino. bytes per table entry
integer*2 currentcount Icurrent number of entries
integer*2 max-ex Imax no. table extensions
integer*4 extnptr(maxex)taddresses of each extension

end structure

Each table of a given TABLETYPE can accomodate MAXENTRIES per table
extension, with up to MAXEX extensions allocated dynamically by the
central table-managing utilities. MAX ENTIRES may vary from table
type to table type; MAX_EX is the same for all table types; both are
hardwired numbers. The maximum number of entries allowed for a given
table type is MAXENTRIES * MAXEX. The address of the Nth entry
obtained by locating the address of the appropriate table extension
and offsetting (positively) the correct number of entries from this
address.

7.1.2 Structure Descriptor Pointer Table: STRUCDESCRPTRTABLE

This table locates STRUC DESCRs of any given type, providing a pointer
to the STRUC DESCR as well as other pertinant information. When
access to a particular STRUCDESCR is required, this table is searched
for an entry associated with the mnemonic of the structure type. If
an entry is found, it is returned to the calling routine (which
presumably knows how to interpret the information in the entry). If
no entry is found, IGORE searches its disk-based libraries of
STRUCDESCRs for the given type, loads the associated STRUC DESCR into
memory, and creates an entry in the STRUCDESCR PTRTABLE. If the
structure type cannot bp found as a table entry or in a library, an
error message is issued and an Abort On Error condition is signaled.

IGORE attempts to locate any STRUC DESCRs not already loaded into
memory by sequentially searching two libraries: the user's library
and an IGORE system library. The search begins in the user's library.

IGORE Design Description Page 39
GENERAL TABLES FACILITY 3 February 1989

Once a the STRUCDESCR for a particular type is loaded into memory, it
remains resident for the remainder of the session. IGORE system
STRUCDESCRs reside in readonly shared global commons, but are also
loaded only on first refernce. In the case where a system STRUC DESCR
has already been loaded into the shared common, and the user wishes to
override its definition without using a different mnemonic for the
structure type, it will be possible to redefine the
STRUCDESCRPTRTABLE entry to point to the user's STRUCDESCR.

Each entry in the STRUCDESCRPTRTABLE can be accessed with the
following structure:

structure /strucdescrptr/
character*15 structype Imnemonic for type
union

map
integer*4 pointer laddress of STRUCDESCR
integer*4 length Ino. bytes in STRUCDESCR
integer*4 recsize Ino. bytes per record

end map
map

character*12 pak laccess the rest at one shot
end map

end union
end structure

Each search of the STRUCDESCRPTRTABLE will start at the top and
proceed by attempting to match the input mnemonic type with the
STRUCTYPE parameter in successive table entries. The RECSIZE
parameter refers to the number of bytes in a single record of the type
associated with the STRUCDESCR.

7.1.3 Dynamic Record Descriptor Table: DYNAMRECDESCRTABLE

This table is a running list of all DYNAMREC DESCRs. Each time a new
record or array of records is declared, a new DYNAMREC DESCR is
created. The TABLEINDEX parameter of the DYNAM_RECDESCR will be set
to the next consecutive index in the DYNAMRECDESCRTABLE; the table
index portion of the newly created record's (or array of records')
longword(s) will also be set to this value.

7.2 Modules And PDL

IGORE Design Description Page 40
SAVING AND RESTORING ENVIRONMENT 3 February 1989

8 SAVING AND RESTORING ENVIRONMENT

8.1 Design Description Overview

8.2 Modules And PDL

IGORE Design DsrpinPage 41JOURNALING 3 February 1989

9 JOURNALING

9.1 Design Description Overview

9.2 Modules And PDL

IGORE Design Description Page 42
IGORE CONDITION HANDLER 3 February 1989

10 IGORE CONDITION HANDLER

10.1 Design Description Overview

10.2 Modules And PDL

* MORE Design Description Page 43
- An PREPROCESSOR 3 February 1989

11 APE PREPROCESSOR

11.1 Design Description Overview

11.2 Modules And PDL

IGORE Design Description Page 44
STRUCTURE DESCRIPTOR PREPROCESSOR 3 February 1989

12 STRUCTURE DESCRIPTOR PREPROCESSOR

12.1 Design Description Overview

12.2 Modules And PDL

